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Abstract
We construct a smooth realistic barrier potential that can generate resonances
above the top of the barrier provided a parameter λ controlling the flatness of
the barrier is larger than the critical value λ = √

2. The energies and widths
of resonances are expressed analytically in terms of the characteristics of the
barrier, namely height, range and flatness. In order to obtain a more versatile
and asymmetric barrier, two symmetric barriers are merged together side by
side and the exact transmission coefficient across such a barrier is derived.

PACS numbers: 11.30.Pb, 11.55.−m

1. Introduction

The characterization of resonances and their role in the behaviour of the scattering amplitude is
an important topic in the theory of potential scattering. In the S-matrix theory, the bound states
and resonances associated with a particle moving under a potential, V (r), are represented in
terms of poles of the S-matrix in the complex momentum (k-) plane [1]. The bound-state
poles are known to occur on the positive imaginary k-axis, giving a negative-energy state.
The resonance poles represent decaying states with positive energy ER and width �. One
expects that sharp resonances will occur when the potential function has a pocket capable of
trapping the particle to generate a long-lived state, and its decay is due to tunnelling away from
the pocket to infinity. It may be noted that in the classical situation particles trapped in such
potential pockets will generate bound orbits.

In the process of collision of two heavy nuclei, the occurrence of resonances is an important
phenomenon [2]. The general feature of the heavy-ion potential including the Coulomb
interaction and the centrifugal term ( h̄2

2m

l(l+1)

r2 , l > 0) shows a potential pocket in the interior
region and a large Coulomb barrier on the surface region. Heavy-ion collision is characterized
by strong absorption in the interior and, hence, the resonance states that may be generated
by the pocket will have large widths. Therefore, one examines the possibility of occurrence
of resonances due to an orbiting-like phenomenon in the barrier region [3–7]. The barrier
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top is a point of unstable equilibrium. The question arises of whether a potential barrier
can generate quantal resonance states at energies above the top of it which can be termed as
above-barrier resonances (ABRs). The answer to this question is in the affirmative in the case
of a rectangular barrier, where discrete resonances are observed above the top of the barrier.
However, in the case of a realistic smooth barrier, the occurrence of ABRs is not clearly
visualized and formulated in terms of the characteristics of the barrier. In this context, we note
below some well known analytically solvable smooth barrier potentials, namely parabolic,
Eckart and Morse, and point out their inability to produce observable ABRs.

Friedman and Goebel in their paper [6] have obtained the following expression for the
barrier top resonance pole in the complex energy plane for different partial waves l:

En,l = V0 − i(2n + l + 3/2)ω, n = 0, 1, 2, . . . (1)

in the case of a spherically symmetric parabolic potential barrier

V (r) = V0 − 1
2mω2r2, r � 0. (2)

Here, V0 and ω indicate the height and oscillator frequency of the barrier, respectively. We
note that equation (1) essentially manifests a kind of degeneracy. That is, at the same real
energy we have an accumulation of infinitely many levels of steadily increasing widths. The
question arises of whether this can manifest an observable sharp resonance. For example,
equation (1) indicates the situation when a large number of broader resonances (n = 1, 2, 3, . . .)
are superposed on the sharpest resonance, corresponding to n = 0, for a particular l. As a
consequence one has a situation in which no resonance character is observed at the top of the
barrier.

Let us consider another example of an exactly solvable smooth barrier. This is the general
Eckart potential barrier given by [8]

V (x) = − Aξ

1 − ξ
− Bξ

(1 − ξ)2
, (3)

where ξ = −e2πx/a , A and B are constants and a represents the slope of the barrier potential.
This can generate an asymmetric barrier with long-range character on one side. If A = 0, a
symmetric potential is obtained with

V (x) = (B/4)sech2

(
πx

a

)
(4)

which possesses a maximum of B
4 at x = 0. As clearly shown in [8], this potential barrier

in either symmetric or asymmetric form cannot generate any resonance at energy above the
barrier.

The Morse barrier potential expressed as

V (x) = B[2e(x/a) − e(2x/a)], (5)

where B and a indicate the height and slope of the barrier, respectively, is another idealization
of smooth potential barriers which is analytically solvable for transmission coefficient etc.
It can be clearly seen from the exact expression for transmission amplitude [9] that discrete
resonances can never be produced in the above-barrier region of energy.

In view of the above observations, it is highly essential to search for a potential barrier
which can generate discrete ABRs and at the same time the barrier is smooth, short ranged,
ideal and analytically solvable for wider applicability in physical processes.

In this paper, we construct a barrier potential by modifying an attractive one-dimensional
potential expressed by Ginocchio in [10]. This barrier is found to be smooth, symmetric, flat
at the top, maximum at x = 0 and short ranged due to convergence on both sides (x → ±∞).
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Having obeyed a condition on the flatness of the barrier, this barrier can generate discrete
ABRs in which the sharpest resonance is found close to the barrier top. As the potential is
exactly solvable, the energy and width of the ABRs are expressed analytically in terms of the
characteristics of the barrier, namely height, range and flatness. The parameter λ controlling
the flatness of the barrier is such that if λ >

√
2, ABR occurs. Interestingly, when λ = 1, this

potential barrier reduces to the symmetric form of the Eckart potential given by equation (4),
which fails to generate any ABR.

Our study in this paper is restricted to one dimension. However, the condition and
conclusion on ABR stated above can be shown to be valid in the three-dimensional situation
also by considering the potential expressed by Ginocchio in [11].

Further, in order to generate an asymmetric nature in the barrier having unequal slopes or
ranges on either side of it, two symmetric potential barriers as considered above are merged
together side by side. The transmission coefficient across such a composite barrier is expressed
analytically. Such a technique of merging has been preformed in [12, 13] but the potentials
considered are infinite ranged inverted harmonic oscillators of the type given by (2), which
tend to −∞ as x → ±∞ and cannot produce ABR. Our present merged potential barrier,
which converges on both sides, incorporates both aspects: asymmetry and ABR. Hence, it is
more versatile and realistic. As the Coulomb barrier in nucleus–nucleus potential is found to
be generally asymmetric, smooth and practically short ranged in nature and resonance is an
important event occurring in the collision process, the exact expression for the transmission
coefficient across such an asymmetric barrier which can generate ABR as well may be more
suitable for the analysis of measured data of fusion in the collision of two nuclei at low energies.
However, earlier, we used, in such an analysis [14], the expression for transmission coefficient
across the merged parabolic barrier [12] with limited success.

In section 2, we develop the symmetric barrier and obtain the expressions for transmission
coefficient, resonance energy and width. In section 3, the merging of two symmetric barriers
is carried out and the expression for transmission coefficient is derived. Section 4 contains the
discussion and conclusion.

2. The symmetric potential barrier

We modify the one-dimensional attractive potential given by Ginocchio [10] and obtain and
analyse a symmetric barrier potential as follows.

In the Schrödinger equation[
− h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (6)

the potential V (x) is expressed in the form

V (x) = V0v(bx), (7)

where V0 represents the strength of the potential in units of energy and b is the scale parameter
in units of inverse distance given by

b =
(

2m

h̄2 V0

)1/2

. (8)

Here, m denotes the mass of the particle moving under the potential V (x).
Using the dimensionless distance variable r = bx, we write the functional form v(r) of

the potential

v(r) = λ2ν(ν + 1)(1 − y2) +
1 − λ2

4
[5(1 − λ2)y4 − (7 − λ2)y2 + 2](1 − y2). (9)
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Figure 1. Plot of potential as a function of distance. The height of the barrier VB =
V0[λ2(ν2 + ν − 1

2 ) + 1
2 ] at the origin is equated to 10 fm−2. In all three cases, λ = 5.5 but ν

is different: (a) ν = 1.833 and λ
ν

= 3, (b) ν = 3.9286 and λ
ν

= 1.4, (c) ν = 11 and λ
ν

= 0.5.

Here, λ and ν are two dimensionless parameters. The parameter ν measures the height of the
barrier. The parameter λ accounts for the shape of the barrier. The function y(r) is related to
the radial variable r by

r = 1

λ2
[tanh−1 y − (1 − λ2)1/2 tanh−1(1 − λ2)1/2y]. (10)

While the range of r is −∞ � r � ∞, the range of y is −1 � y � 1. The parameter λ can take
any positive value 0 < λ < ∞. It may be pointed out here that expression (9) representing a
barrier is not just the total negative of the expression for the attractive case considered in [10].
The height of the barrier potential (7) is maximum at the origin x = 0 and is of value

VB = V0[λ2(ν2 + ν − 1
2 ) + 1

2 ], (11)

and it converges symmetrically on both sides as x → ±∞. For a fixed value of VB , the
variation of ν will indicate the change in the range of the barrier instead of height. This is
exhibited in figure 1 for a typical barrier of height VB = 10 fm−2. Here, we have considered
h̄ = 2m = 1 and expressed energy in fm−2 units and distance in fm units for convenience.
For λ = 1, the potential (7) with (9) reduces to the well known symmetric form of the Eckart
potential barrier given by (4) with maximum height at x = 0 equal to VB = B/4 = V0ν(ν + 1)

and slope parameter a = π/b, where b is given by (8). For λ > 1, the top of the barrier
becomes flatter.
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2.1. Transmission coefficient

The Schrödinger equation (6) can be written in dimensionless form[
− d2

dr2
+ v(r)

]
�(r) = E′�(r), (12)

where E′ = E/V0. Using expression (9) for v(r), the above equation can be reduced to
Gegenbauer’s equation as done in [10]. Finally we obtain the following analytical expression
for the wavefunction:

�(r) = NG[λ2 + (1 − λ2)z2]1/4(1 − z2)
− ik

2λ2 F

(
ν + 1 − ik

λ2
, −ν − ik

λ2
, 1 − ik

λ2
,

1 − z

2

)
,

(13)

where

G = �(−ν − ik
λ2 )

�(1 − 2ik
λ2 )�(−ν + ik

λ2 )
, (14)

ν =
[

1

4
− ν(ν + 1) +

λ2 − 1

λ4
k2

]1/2

− 1

2
, (15)

k =| E′ |1/2=
√

E

V0
. (16)

Here N indicates the normalization constant and the last term (function F ) in expression (13)
is the hypergeometric function with variable

z = λy

[1 + (λ2 − 1)y2]1/2
. (17)

Clearly the range of variation of z is same as y. Using the nature of the above
wavefunction (13) at r = ±∞ and the appropriate boundary condition on either side of
the barrier, it is straightforward to arrive at the following expression for the transmission
amplitude T (E) across the barrier:

T (E) = �(ν + 1 − ik
λ2 )�(−ν − ik

λ2 )

�(1 − ik
λ2 )�(− ik

λ2 )
e2ikr1 , (18)

where

r1 = 1

λ2
log λ − r0,

r0 = (λ2 − 1)1/2

λ2
tan−1(λ2 − 1)1/2.

The square modulus of expression (18) gives us the transmission coefficient Tc as

Tc(E) = cosh( 2πk
λ2 ) − 1

cosh( 2πk
λ2 ) + cos(2πω)

, (19)

where ω = [
1
4 − ν(ν + 1) + λ2−1

λ4 k2
]1/2

, and k is given by (16).
It is clearly seen that for λ = 1 expression (19) reduces to the well known expression for

transmission coefficient corresponding to a symmetric Eckart barrier similar to the form of
expression (4).
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2.2. Energy and width of ABR

The resonances generated by the potential barrier can be readily obtained from the position
of the maxima of the transmission coefficient Tc in its variation with energy. Hence, in the
corresponding amplitude expression (18), the condition

−ν − ik

λ2
= −n, n = 0, 1, 2, . . .

leads to the following expressions for resonance energy En and its width �n in terms of the
barrier parameters ν, λ and V0:

En = V0
[
(λ2 − 2)(n + 1

2 )2 + λ2(ν2 + ν − 1
4 )], (20)

�n = 4V0(n + 1
2 )[(λ2 − 1)(n + 1

2 )2 + λ2(ν2 + ν − 1
4 )]1/2. (21)

It is clear from (20) that if λ2 = 2 all the resonances (n = 0, 1, 2, 3, . . .) are situated at the top
of the barrier having the same energy En = VB = 2V0

[
ν2 + ν − 1

4

]
as given by equation (11),

but when λ2 > 2 we find discrete ABRs starting from the lowest one n = 0 with E0 close to
the top. The corresponding width obtained from expression (21) increases for higher ABRs
while n = 0 corresponds to the sharpest resonance. It may be pointed out here that the discrete
energies obtained from (20) for λ2 < 2 are all situated below the corresponding maximum
height of the barrier and they do not correspond to genuine resonances. Some more discussions
on the nature and manifestation of ABRs are given in section 4 below.

3. Transmission across a merged composite barrier

We construct here a composite potential barrier by placing side by side two symmetric potentials
of the form (9) presented in the previous section. This potential can be expressed as

V (x) = V01v1(r)θ(−r) + V02v2(r)θ(r), (22)

where the two step functions have the property θ(r � 0) = 0 and θ(r > 0) = 1. Further,

v1(r) = λ2
1ν1(ν1 + 1)(1 − y2) +

1 − λ2
1

4
[5(1 − λ2

1)y
4 − (7 − λ2

1)y
2 + 2](1 − y2), (23)

v2(r) = λ2
2ν2(ν2 + 1)(1 − y2) +

1 − λ2
2

4
[5(1 − λ2

2)y
4 − (7 − λ2

2)y
2 + 2](1 − y2). (24)

Hence, in the region r > 0, we have V (r) = V02v2(r) and in the region r � 0, V (r) = V01v1(r)

and r is the dimensionless distance variable expressed as r = bix with bi = ( 2m

h̄2 V0i )
1/2,

i = 1, 2. The parameters ν1, ν2, λ1, λ2 are dimensionless. Thus, expression (22) represents
a composite barrier potential with six parameters ν1, ν2, λ1, λ2, V01 and V02. By equating
the heights of the two side barriers in this expression we obtain a single barrier specified by
different sets of parameters on either side. This composite barrier can become symmetric,
asymmetric, flatter or less flat on either side depending on the values of the above parameters.

As in the symmetric case, we obtain the exact solutions for the repulsive potentials in the
regions r < 0 and r > 0 on either side of the barrier. By using appropriate boundary conditions
on these solutions we arrive at the following expression for the transmission coefficient:

Tc(E) = 1

π2

λ3
1

λ2

k2

k1

|L1|2|L2|2
|�(− ik1

λ2
1
)|2|�(1 − ik2

λ2
2
)|2|L2λ1 + L1λ2|2

, (25)

where

L1 = �

(
ν2

2
− ik2

2λ2
2

+ 1

)
�

(
−ν2

2
− ik2

2λ2
2

+
1

2

)
�

(
ν1

2
− ik1

2λ2
1

+
1

2

)
�

(
−ν1

2
− ik1

2λ2
1

)
, (26)



Above-barrier resonances: analytical expressions for energy and width 4355

L2 = �

(
ν1

2
− ik1

2λ2
1

+ 1

)
�

(
−ν1

2
− ik1

2λ2
1

+
1

2

)
�

(
ν2

2
− ik2

2λ2
2

+
1

2

)
�

(
−ν2

2
− ik2

2λ2
2

)
, (27)

ν1 =
[

1

4
− ν1(ν1 + 1) +

λ2
1 − 1

λ4
1

k2
1

]1/2

− 1

2
, (28)

ν2 =
[

1

4
− ν2(ν2 + 1) +

λ2
2 − 1

λ4
2

k2
2

]1/2

− 1

2
, (29)

k1 =
√

E
V01

and k2 =
√

E
V02

.

On further simplification, we have

Tc(E) = 16π4λ1λ2h1h2

(λ2
2|L1|2 + λ2

1|L2|2)(s2
1 + h2

1)(s
2
2 + h2

2) + 8π4λ1λ2(s1s2 + h1h2)
, (30)

where s1 = sin(πν1), s2 = sin(πν2), h1 = sinh( πk1

λ2
1
) and h2 = sinh( πk2

λ2
2
).

Clearly, when λ1 = λ2 = λ, ν1 = ν2 = ν and V01 = V02 = V0 we get back the
transmission coefficient (19) for the symmetric case.

4. Discussion and conclusion

As pointed out in the introduction, an Eckart barrier, symmetric or asymmetric, does not
generate any ABR. This result of no resonance in the symmetric case is quite clearly seen in
our present formulation (20) when λ = 1 corresponding to the symmetric Eckart potential.
Now, in order to confirm the result of the asymmetric situation, we consider expression (25) of
Tc corresponding to the merged barrier potential given by (22). Using ν1 �= ν2 and λ = 1, we
can compute (25) and find that no resonances can be generated in this asymmetric but smooth
barrier as in the symmetric Eckart barrier potential.

Choosing different values for ν1, ν2, λ1 and λ2 we can generate a variety of potential
barriers with different flatness and range on either side of the barrier. All these barriers will
be generating ABR provided they satisfy the condition λ2

i > 2, i = 1, 2.
In order to illustrate some interesting features of ABR, we consider, in the symmetric

situation, the maximum height of the barrier given by (11) fixed at VB = 10 fm−2 and change
the values of λ and ν to generate different barriers. Taking λ = 5.5 and using different values
of ν we see that if the ratio λ

ν
< 1.4 there is always a single barrier. On the other hand, if

λ
ν

> 1.4, the single barrier starts to become a double barrier with a pocket in the middle.
This is also true for other values of λ. In figure 1, we show such potential barriers with three
different sets of parameters: (a) VB = 10 fm−2, λ = 5.5, λ

ν
= 3, (b) VB = 10 fm−2, λ = 5.5,

λ
ν

= 1.4, and (c) VB = 10 fm−2, λ = 5.5, λ
ν

= 0.5. It is seen that a larger value of ν generates
a long-ranged potential as shown in figure 1(c). Fixing the height of the barrier at the origin at
10 fm−2 and taking the value of λ = 5.5, we compute the results of resonance energy En and
width �n by using equations (20) and (21), respectively, as functions of the range parameter ν.
These are plotted in figure 2 for the first three states, n = 0, 1 and 2. It is clearly seen that when
ν is large the resonances (upper panel) are found close to the top of the barrier (VB = 10 fm−2)
and they are sharper (small �n) (lower panel) than those for smaller ν.

Besides generation of a large number of resonances with smaller widths, the manifestation
of resonances in physically observable quantities, namely cross section and, hence,
transmission coefficient, is an important aspect. In this respect, the spacing between adjacent
levels 
En = En+1 − En obtained from expression (20) for the resonance energy should be
compared with the width �n given by equation (21) of the nth level. If 
En � �n, then one can
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Figure 2. Upper panel: plot of resonance energy En as a function of range parameter ν. Lower
panel: plot of width �n as a function of ν. These results correspond to a barrier with λ = 5.5 and
a fixed height VB = 10 fm−2 at the origin.

only expect clear manifestation of the nth resonance without being blurred by the neighbouring
resonances. In our case, we have from (20)


En = En+1 − En = 2V0(λ
2 − 2)(n + 1). (31)

We search for the values of the barrier parameters λ and ν which give the result 
En

�n
� 1 and

exhibit their manifestation in the results of transmission coefficient Tc given by equation (19).
In figure 3, we plot first the ratio 
En

�n
as a function of the range parameter ν for a fixed value

for flatness λ = 5.5 and height VB = 10 fm−2. We see that the condition 
En

�n
� 1 is satisfied

by smaller values of ν. Looking at figure 3, we consider two values of ν with reference to the
n = 0 state, (i) ν = 3 such that 
En

�n
� 1 and (ii) ν = 5 such that 
En

�n
< 1, and plot the values

of Tc (19) as a function of E in figure 4, where λ = 5.5 and VB = 10 fm−2. The solid curve,
representing results with ν = 3 satisfying 
En

�n
� 1, shows resonance peaks distinctly. On the

other hand, the dotted curve, corresponding to ν = 5 satisfying 
En

�n
< 1, does not manifest

the resonances clearly.
However, we have seen earlier that a larger value of ν makes the barrier long ranged and

generates resonances situated close to the top of the barrier, and also these resonances are
narrower. That is, sharper resonances are crowded near the top of the barrier for larger ν with
λ2 > 2. However, as discussed above, in order to have a distinct manifestation, smaller values
of ν generating short-ranged barriers are preferable. Further, the number of distinct ABRs
increases with the increase of the value of the parameter λ, generating a flatter barrier top.
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∆E
n
/T

n

Figure 3. Plot of the ratio of energy level difference 
En given by (31) (see text) and width
�n given by (21) as a function of range parameter ν. This corresponds to fixed barrier of height
VB = 10 fm−2 and λ = 5.5.

Figure 4. Plot of transmission coefficient Tc given by equation (19) (see the text) as a function of
incident energy for the symmetric barrier of height VB = 10 fm−2 and flatness parameter λ = 5.5.
The solid curve is for ν = 3 and the dotted curve for ν = 5.

Thus, we have now a versatile exactly solvable potential which gives us a barrier that can
be symmetric and asymmetric along with variable range and flatness at the top. This barrier
can generate discrete ABRs with the condition that the flatness of the barrier represented by
the parameter λ >

√
2. The analytical expressions for the transmission coefficient, resonance

energy and width given in this paper can be of immense use in different branches of physics. In
particular, one can use these results for better understanding of the orbiting-like phenomenon
in the collision of two heavy nuclei. Further, some new features of fusion and molecular
resonances in this collision process can be addressed. A preliminary calculation in this regard
gives us encouraging results and this will be reported elsewhere soon.



4358 B Sahu et al

Acknowledgments

We are grateful to Professor L Satpathy for valuable discussion. BS acknowledges the support
by BRNS, Mumbai vi-de research grant No 2000/37/11/BRNS/704.

References

[1] Newton R G 1966 Scattering Theory of Waves and Particles (New York: McGraw-Hill) ch 12
[2] Cindro N 1981 Riv. Nuovo Cimento 4 1
[3] Ford K W and Wheeler J A 1959 Ann. Phys., NY 7 259
[4] Ford K W, Hill D L, Wakano M and Wheeler J A 1959 Ann. Phys., NY 7 239
[5] Child M S 1974 Molecular Collision Theory (New York: Academic)
[6] Friedman W A and Goebel C J 1977 Ann. Phys., NY 104 145
[7] Brink D M 1985 Semi-Classical Methods for Nucleus–Nucleus Scattering (Cambridge: Cambridge University

Press)
[8] Rapp D 1971 Quantum Mechanics (New York: Holt, Rinehart and Winston) p 136
[9] Ahmed Z 1991 Phys. Lett. A 157 1

[10] Ginocchio J N 1984 Ann. Phys., NY 152 203
[11] Ginocchio J N 1985 Ann. Phys., NY 159 467
[12] Ahmed Z 1997 J. Phys. A: Math. Gen. 30 5243
[13] Ahmed Z 1998 J. Phys. A: Math. Gen. 31 3115
[14] Sahu B and Shastry C S 1999 J. Phys. G: Nucl. Part. Phys. 25 1909


